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• Approximate message passing (AMP) algorithms:
• Efficiently solve inverse problems
• Originally developed for linear inverse problems
• Extended to multi-layer networks (ML-VAMP)

• Key property: State evolution provides performance guarantees in high dimensional regime
• Main contributions:

• Learning parameters of a two-layer network using AMP framework
• State evolution provides estimation error at each iteration
• Predicts when learning will or will not work

This Work: Analysis via Message Passing

Matrix AMP

Predicting Performance for a Synthetic Network
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Background on Vector AMP

𝑝(𝒙𝟏)

𝒙𝟏 𝒙𝟐

𝛿(𝒙𝟏 − 𝒙𝟐) 𝒩(𝒚; 𝑨𝒙𝟐, 𝛾𝑤
−1𝑰)

Learning Two-Layer Neural Networks
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• Two-layer fully connected neural network

𝒛 = 𝑾𝟏
𝑻𝒙 + 𝒃𝟏, 𝒚 = 𝑾𝟐

𝑻𝜎 𝒛 + 𝒃𝟐
• 𝑾𝟐, 𝒃𝟐 known
• Goal: Learn 𝑾𝟏, 𝒃𝟏 from samples 𝒙𝒊, 𝒚𝒊 , 𝑖 = 1, … , 𝑁 generated by a ground truth network

Linear inverse problem
• Model: 𝒙 ∼ 𝑝 𝒙 , 𝒚 = 𝑨𝒙 +𝒘, 𝒘 ∼ 𝒩(𝟎, 𝛾𝑤

−1𝑰)
• Posterior density factorizes:
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• MAP estimation: ෝ𝒙 = argmin𝑥
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• Apply expectation propagation-like inference over factor graph
• Gaussian approximation of messages

• In each iteration:
• Linear Gaussian estimation
• Estimation with prior; separable for separable priors

Properties of VAMP
• State evolution

• Behavior in each iteration exactly explained for large random 𝑨
• Provides MSE in each iteration

• Provably Bayes optimal in certain cases
• Including non-convex cases

• Relates to ADMM with carefully chosen adaptive step size

Factor graph of the empirical risk
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Empirical Risk Minimization

Regularized empirical risk minimization
• Learn parameters by minimizing regularized empirical risk
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• 𝜙(⋅) is a regularizer
• ℒ(⋅,⋅) is a loss function

• ෝ𝒚𝑖 = 𝑾𝟐
𝑻𝜎 𝒛𝑖 + 𝒃𝟐 where 𝒛𝒊 = 𝑾𝟏

𝑻𝒙𝑖 + 𝒃𝟏

• Two-layer ground truth network
• 𝑁𝑖𝑛 = 100, 𝑑 = 4, 𝑁𝑜𝑢𝑡 = 1
• Input: iid Gaussian with variance 1/𝑁𝑖𝑛
• Noise added to output to get different SNR levels

• Key takeaways:
• ADAM optimizer achieves similar results to Matrix AMP
• State Evolution accurately predicts performance of Matrix AMP

High-Dimensional Analysis

• Apply expectation propagation over this graph to get matrix AMP

Main Questions
• Optimization typically performed using some variant of SGD

• Works well in practice
• But hard to analyze
• Error bounds not known to be optimal
• When does learning succeed?
• What is the generalization error?

If a sequence of problems indexed by 𝑁 is solved by Algorithm 1, with lim
𝑁→∞

𝑁𝑖𝑛

𝑁
= 𝛽 ∈ 0,∞

• Data: 𝑋(𝑁) = 𝑈𝑆𝑉𝑇with 𝑈, 𝑉 are square Haar distributed and 𝑆𝑛(𝑁) are bounded
• True weights: 𝑊∗ 𝑁 ∈ ℝ𝑁𝑖𝑛×𝑁ℎ𝑖𝑑 such that rows are i.i.d. samples of 𝒲 ∈ ℝ1×𝑁ℎ𝑖𝑑

• Prox: Act row-wise, have symmetric Jacobians which are uniformly Lipschitz

Then there exists deterministic ഥΓ𝑡 and  ഥΣ𝑡 obtained recursively, 𝒲 ⊥ 𝒵~𝒩(0, 𝐼𝑁ℎ𝑖𝑑) such 

that for all iterations 𝑡

• Joint distribution of estimate and true vectors converge

• Recursive formula for 𝑊𝑡,𝑛:
+ ,𝑊𝑛,:

∗

• Provides exact prediction of parameter and generation error
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