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If number of samples n, regularization parameter \,, satisty
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e Comnsistency guaranteed, rate O(n_%) for hard sparsity

e Lor consistent estimation, sample complexity n grows as
— O(Gylogp) with lags p; a sufficient condition for Gy = O(1) is
Ly = O(p~ ') and the tail ©;;, decays faster than O(/~3/2)

— (O(s°) with sparsity s, non-ideal but simulations suggest gl+9o

— O(log N) with dimension N, previously unknown for p > 1

e Main challenge: summation in definition of £(©) is not i.i.d.

e Motivation: Multivariate Bernoulli Processes can model

— Spike trains from an ensemble of neurons
— Networks of dynamical systems with binary states

Trends in stock prices,
Activity in social networks

*
*

x Crime, medical emergencies in a metropolitan area
x Climate dynamics: atmospheric circulation patterns
*

Physiological systems, biological signaling networks

e (Goal: Infer the structural interconnections between these
dynamical systems from binary-valued observations

e Challenges: Non-i.i.d., non-Gaussian, nonlinear feedback,
long-term dependencies (non-Markovian) data
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1. Nonlinearity f:R—e,1—¢, L ¢-Lipschitz,

f, 1 — f strongly log concave
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E(A;{x'}) > RHS with high probability
A; {z'}) due to Assumptions 1,2
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— 714, A € C(9*)

e LHS > £(A

— Inequality holds for [E &(
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and the process {z'} is n-mixing due to Assumption 3

— Uniform law over A € C using Covering arguments
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additional s factor in the sample complexity

— For A € C, we have This causes an

2. Choice of regularization parameter: \, > [|VL(O")| ..

o VL(O%) is a zero mean martingale difference sequence

e Azuma-Hoeffding’s gives ||[VL(0*)| oo = O(+/log(N2p)/n)




