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Motivation: Challenges due to widespread EV adoption

o Utilities need to plan capacity robust to load variability

e Our focus: EV Charging Aggregators

e Buy from utility company, supply to EV users
e For e.g. parking lots at airports, malls, and DC fast charging facilities etc.

e If an aggregator allows all users to charge at the fastest kW rate,
Power capacity (K) o Space (M) x Max charging rate (rmax)

e For e.g.: UCLA would require 20,000 x 120 kW = 2.4 GW

e Problem: Can we achieve a better scaling than the worst-case
product above?

@ Solution: Incentivise EV users to stay longer via pricing

~ 10 fold reduction for aggregator at the scale of UCLA
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Problem formulation

Aggregator

@ Aggregator agrees with the utility not to exceed power usage by K (in kW)
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Problem formulation

Aggregator -

Poisson arrival rate A

@ Aggregator agrees with the utility not to exceed power usage by K (in kW)
@ Users demand z; (kW-hr) and impatience a; ($/hr), (2, ;) ~ fz,a
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Aggregator agrees with the utility not to exceed power usage by K (in kW)
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Aggregator broadcasts parameters of pricing function

Pricing function incentives users to provide longer service time deadlines
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Problem formulation

Broadcasting ...
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Aggregator agrees with the utility not to exceed power usage by K (in kW)

Users demand x; (kW-hr) and impatience «; ($/hr),

Aggregator broadcasts parameters of pricing function

(Ti, 1) ~ fo,a

Pricing function incentives users to provide longer service time deadlines

User ¢ chooses their service time/deadline - u; (in hr) based on the total cost

u; = argmin Py o r(zi,u) + ;U
N—— A

u>0

Monetary cost

Opportunity cost
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Problem formulation

Broadcasting ...
a.c.T(
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Aggregator agrees with the utility not to exceed power usage by K (in kW)

Users demand x; (kW-hr) and impatience «; ($/hr), (2, 5) ~ fo,a

Aggregator broadcasts parameters of pricing function

Pricing function incentives users to provide longer service time deadlines

User ¢ chooses their service time/deadline - u; (in hr) based on the total cost

u; = argmin Py o r(zi,u) + Qi
u=0 ——— ~~
Monetary cost Opportunity cost

Note: Aggregator could be distributed since sum of Poisson processes is a Poisson process
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Discount-based pricing function

@ Desired properties from P(z,-) to incentivise longer deadlines u;

e Decreasing: Users pay lower price for longer service times
o E.g. Patient users (i.e. lower oy, longer u;) get more discount
e Convex: Discounts are diminishing as service time increases

@ We consider the following pricing function

e For charging an EV by « kW-hr in time v hr is,

Pocr(z,u) = x(ae™ +¢)
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Discount-based pricing function

P(z,u) v/s u
axy Interpreting the parameters:
| T T, P(x,u) = z(ae™"" +¢)
\ T
\ 1\\\\1 @ c - Base price ($/kW-hr),
T277% ) @ a - Surge price ($/kW-hr)
cx S @ 7 - Suggested service time (hr)

@ Service time decision by user ¢ to minimize total cost,

ax;
u;=T - log ( >
T

e $ amount paid by user ¢ with demand z; and impatience o

Pyer(ziyu) =czi+ 7o
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Capacity planning under stochastic demand

1(y)?

@ Let fz,o be such that Eu = br, IE( ) = % and Var (%) = (
@ Let the maximum rate of charging a single EV be rmax (in kW)

z
u

Theorem (Space and Power Capacity, for constant power charging)

For an arrival rate of A, at any time, with 99% confidence, we have

@ Demand for space will not exceed

M = \br +VBAbT +3

© Power delivered will not exceed

K =Xbu+ (4 v)\/6Ab/T + 6rmax

Similar to Y ~ A (u,o?), then with 99% confidence, Y < u + 30.

K o< O(M + Tmax) instead of K o< O(M X rmax)

Optimal rate with respect to A. A lower bound of K = Q(\) exists.
Tradeoff: Space capacity M = O(7). Power capacity K = O(1//7).
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Numerical simulations - Excess capacity v/s A
Excess capacity o
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Excess ;= Lheorem—Actual o 100 For 100 simulations of 8 hr each
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Numerical simulations - Capacity v/s Confidence

1
Excess capacity o< 103%) for 1 — ¢ confidence

Excess= W x 100. For 100 simulations of 8 hr each.
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Figure: NP isthel—6 percentile of occupied space, Q5 is the 1 — 6 percentile of power delivery.
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Summary

Pricing can help incite some desired behaviour in impatient users

e Probabilistic constraints allow reducing installation capacity
drastically from K o O(M X rmax) to K o< O(M + rmax)

e Example: =~ 10 fold reduction for UCLA.

We characterized probability of failure that helps plan for back-up
capacity (battery banks/generators)

Other aggregators with impatient users
e Cloud computing: Client machines upload FLOPS to a server with a
deadline for the computation. Users get discounts for waiting longer.
o Cab aggregators: Users get a discount for waiting longer (Uber Pool or
Lyft Line), allowing for more efficient resource allocation by aggregator.
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Thank You!
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